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An approximately single-exponential decay of an initially prepared non-stationary state can occur in quantum systems even if 
there are only a finite number of states. The time scale ? of the decay is then much shorter than the recurrence time T of the 
system. We describe here a method for calculating the probability amplitude of the non-stationary state, observed on a time scale 
y-r, by a mean relaxation time approximation. In many cases the resulting decay constant T(y) is almost independent of y for 
7 g: y -’ Q: T, and the value found for it in this regime constitutes the actually observed decay constant. 

1. Introduction 

The exponential decay of a quantum state coupled 
to a continuum of states is a well-known phenome- 
non. Under certain assumptions, e.g., an unbounded 
continuum with density p(E) and weak coupling be- 
tween the unstable state and the continuum states 
with the coupling element y(E) depending only on 
the energy E, this behavior can be derived theoret- 
ically [ 1,2]. The resulting decay constant r is given 
by the golden rule formula 

r=2x I~(&) 12P(J50) 3 (1) 

where E, is the mean energy of the initial state, and 
we have set fi equal to unity. However, even in quan- 
tum systems with only a finite number of states, 
where eq. (1) no longer is valid, an approximately 
exponential decay can often be observed [ 3,4]. 

This quasi-dissipative decay on a time scale r is 
followed by quantum recurrences on a much longer 
time scale T, related to the non-zero spacing AE of 
the spectrum. Such a behavior may occur, for ex- 
ample, in the case of quantum chaos [ 51. More im- 
portantly here, it is also encountered in the theoretical 
description of intramolecular relaxation processes. 
If, for example, a vibrational/rotational wave packet 
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of states in an isolated polyatomic molecule is ex- 
cited optically to a high enough energy, a quasi-dis- 
sipative and almost exponential decay of this “state” 
can be observed experimentally [ 6,7]. For inter- 
mediate excitation energies damped quantum beats 
are observed also [ 61. 

The theoretical description of this situation com- 
monly starts with a representation of the system in 
terms of a large but finite number of zeroth-order ba- 
sis states from which a matrix Hamiltonian H is de- 
rived [ 81. In this approach the probability of a non- 
stationary state decreases initially as 1 - c?f*, c? being 
the spread in energy of the initial wave packet, and 
shows the above mentioned recurrences at long times. 
An approximate exponential decay in such a finite- 
state system is, therefore, a phenomenon which oc- 
curs at an intermediate time scale. It cannot be de- 
rived exactly, but is the result of some approximate 
phenomenological description. 

A direct way to determine the decay constant for 
an excited state from the given Hamiltonian H of a 
polyatomic molecule would be, in principle, to cal- 
culate the time evolution of an initial state 1 w( 0) ) 
explicitly, using the diagonalized Hamiltonian, and 
to tit an exponential function to the decaying part of 
its occupation probability. In contrast, we seek a 
method that avoids the diagonalization and yields 
an approximate decay constant in terms of some 
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general properties of the Hamiltonian, like the golden 
rule formula does in the case of a continuum of states. 
In the following we investigate whether the mean re- 
laxation time description used successfully for cor- 
relation functions in stochastic systems #I can provide 
a simplified phenomenological approximation for the 
intermediate time-scale quasi-dissipative decay in fi- 
nite-state quantum systems. 

2. Theory 

In order to separate in the present theoretical de- 
scription the expected decay of the non-stationary 
inital state I V( 0) ) from the quantum recurrences, 
we assume that the, state is observed experimentally 
on a time scale y - ’ (e.g., a radiative time scale). The 
probability to remain in I w( 0) ) is then given by 

~(0=I(yl(0)llu(0)12exp(-V). (2) 

For y > T - ’ the recurrences will be largely damped 
out by the exponential in eq. (2), and only the quasi- 
dissipative decay will be visible in p(t). In quantum 
mechanics the underlying quantities are, of course, 
the probability amplitudes, the one corresponding to 
~(0 being given by t WI I w(t) > exp( - M). The 
mean relaxation time (in our case complex-valued) 
of this amplitude is given by [ 91 

m 

T(Y)= tw(o)I~v(t))exp(-tyt)dt. I 
0 

(3) 

Using)v(r))=exp(-i8Ht)Iv(O))themeanrelax- 
ation time can be expressed as matrix element of a 
resolvent operator, 

r(y)=(~(O)I(1Yl+iGH)-‘I~v(O)) 3 (4) 

where I is the identity matrix. We have used the 
shifted Hamiltonian 6H=H- (H) in eq. (4), (H) 
being the mean energy of the inital state, 
(H)=(~(O)JHI~(O)).Thisshiftisusefulforthe 
determination of long-time properties [ lo]. The 
mean relaxation time approximation of the proba- 

#I The quantity called here the mean relaxation rime is com- 
monly used in the field of statistical mechanics, sometimes un- 
der different names like linear relaxation time. Some references 
are given in ref. [ 91. 
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bility amplitude is a single-exponential description 
[ 91, resulting in 

P(t)= IevWWl 12=exp[-Wtl W 
for the probability itself, with the decay constant 

r(r)=2Re(l/7(y)). (5b) 

Eq. (5a) is the phenomenological form for p( t) that 
we are seeking. As argued above, this phenomeno- 
logical description should reproduce the decaying 
part of the probability for y > T--I. 

By a suitable choice of basis states, or by employ- 
ing a simple unitary transformation, the matrix 
Hamiltonian 6 H can always be cast into a form such 
that the initial wave-packet is given by the first basis 
state, i.e. where the initial wave packet can be writ- 
ten as 

Iv(O)>= ; 9 0 
0 denoting the zero vector, and 

(6b) 

u is a vector describing the interactions of the initial 
state with the remaining states which we denote as 
“bath” B, u+ is its transpose, and SHB is the matrix 
Hamiltonian of the bath. Employing eqs. (4) to (6) 
we can determine the phenomenological decay con- 
stant r(y) to be 

~(y)=y{l-t~+[(_5y)*I+6H~]-‘~}. (7) 

As can be seen in the appendix, eq. (7) reduces to 
the golden rule, eq. (1 ), in the limit y -0, upon using 
the continuum approximation for the bath. We note, 
in passing, that renormalizations of the golden rule 
formula due to tiers of mutually coupled continua 
[ 111 can also be derived from eq. (7). 

The qualitative properties of r( y) for a finite-state 
system can readily be investigated with a model of 
the Bixon-Jortner type [ 31, i.e. a diagonal (2A4+ l)- 
state bath Hamiltonian 6HB with eigenvalues 
Ej=AEo+jAE, j= -M, . . . . M, and a constant cou- 
pling v, i.e. (U)j= v. AEo is the energy shift between 
the center of the bath spectrum and the mean energy 
of the initial state, and AZ? is the spacing of the spec- 
trum. For large values of the density p= l/AE this 
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Fig. 1. Decay constant I’(y) versus inverse experimental time scale 
y in Bixon-Jortner models; parameters: (a) AE= lo-‘, (b) 
AE=10-2, (c)AE=lO-‘, (d)AE+O;M=2fAE,AE,,=fAEand 
uZ=AE/2n in each case; (dashed line) golden rule value r = 1; 
(dotted line) asymptotic behavior r(y) = y for large y . 

model exhibits an approximate exponential decay of 
the initial state with the decay constant determined 
by eq. (1) [ 3,4]. The behavior of r( y) for this model 
is shown in fig. 1 for different values of v and of the 
spacing M of the bath spectrum. The parameters AE 
and v are chosen in such a way that they lead to the 
same golden rule decay constant r, eq. (11, in each 
case. For large Y the experimental damping domi- 
nates over the actual decay and, therefore, r(y) = y 
holds asymptotically. For small Y the recurrences are 
simply superimposed on a decay curve with rate con- 
stant Y, thereby leading to r(Y) a y as asymptotic be- 
havior. As can be seen from fig. 1, r(y) exhibits a 
stationary behavior, r(Y) zr, for values of y be- 
tween yxT-‘=AE and yxr-‘=r. This result 
demonstrates that the approximation eq. (5) is, in- 
deed, independent of the experimental time scale in 
this regime of r( y)., and that the value of r( y) in the 
stationary regime gives a good estimate for the ac- 
tually observed decay constant. For comparison, 
curve (d) in fig. 1 shows the dependence of r( y) on 
Y in the limit of vanishing spacing, where 
r(Y) = y + 27r 1 VI ‘p holds. As is seen clearly, in the 
limit y+O the phenomenological decay constant r(y) 
goes to a finite value which is given by the golden 
rule formula. 

In the case of Bixon-Jortner models the numerical 
evaluation of eq. (7) is straightforward due to the 
use of a diagonal bath Hamiltonian. For a general 

Hamiltonian a method similar to the low-frequency 
expansion approach, presented by us recently [ lo], 
can be employed. We can expand the matrix contri- 
bution in eq. (7) formally for small Y, i.e. 

v+ ](tr)‘l +M I-‘+ f. (- l~)~“l~-zn-z , (8) 

with the generalized moments 

,u__~,, =v+&H;‘~v (9) 

as expansion coefficients. The p_zn can be obtained 
by solving numerically the hierarchy of linear equa- 
tions 6Hn~_~=p_~+, for the vectorsp_,, withlr,=v 
as starting rhs vector, and evaluating P_~,,= ]p+] 2. 
Using the first two expansion coefficients in eq. (8), 
,u_~ and h--4, one can construct a lowest-order PadC 
approx’mation to r(y) of the form 

f1(Y)=Y 1+ ( PW-4 

) (M2 +P-JP-4 - 
(10) 

We note that r,(y) provides a lower bound for the 
exact T(y) [lo], i.e. Ti(y) <T(Y). 

Although r,(y) is not a very accurate approxi- 
mation for r(y) in the quasi-stationary regime (see 
below, section 3), it offers the possibility of deter- 
mining approximately the location of the quasi-sta- 
tionary regime of T(Y) on the y-axis. The quasi- 
stationary regime contains an inflection point in a 
log r( y) versus logy plot. We can, therefore, deter- 
mine the experimental time scale Y* at which we have 
to evaluate our phenomenological approximation 
r(y) as the solution of 

d2 

d(log Y)’ 
logr(Y) =o. 

Y=Y* 
(11) 

For the lowest-order approximant to f(y), r,(Y), 
this equation yields 

yT=2(1 tp_pJ~, (12) 

In our current experience y: has usually been a re- 
liable empirical estimate for the regime of experi- 
mental time scales where r(y) exhibits its quasi-, 
stationary behavior. An intuitive justification for this 
result stems from the properties of r , ( y) . r , ( y) de- 
scribes correctly the leading behavior of T(y) for 
small and large values of y, i.e. r(y) = (1 +P-&J and 
r(y) = Y, respectively (cf. fig. 1 above and fig. 2 be- 
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low). The plateau or pseudo-plateau regime of r( y) 
connects those asymptotic regimes. Since r,(y) also 
interpolates between those asymptotic properties, it 
will have an inflection point 7: in this plateau-like 
region and, so, may give a reasonable estimate for y*. 

The actual decay constant can then be obtained by 
evaluating r( 7:). The best way of obtaining the lat- 
ter numerically is comparable to the procedure for 
determining the generalized moments [ lo] : the lin- 
ear equation 

[(~yt)21+6H;]x=u (13) 

is solved for x and, via eq. (7)) the actual decay con- 
stant is obtained from 

r(y:)=y:(l +VX) * (14) 

The term in parentheses is usually much larger than 
unity. 

3. Example 

We have employed the technique introduced above 
to approximate the quasi-dissipative decay of a high 
energy excitation in the model molecule 
C,-C,-M-CD,-& where M represents a heavy mass 
barrier (,Si in this case) for the energy transfer be- 
tween the lhs and the rhs of the molecule, and C,, C,,, 
and C, have masses of CH3, CH2 and CDj, respec- 
tively [ 121. The basis set employed for the analysis 
was determined by an artificial intelligence approach 
that selects those zeroth-order states that are impor- 
tant for the time evolution of the particular initial 
state for the given Hamiltonian [ 131. In fig. 2 the 
beharior of f(y) is shown for a 15quantum exci- 
tation of a lhs anharmonic normal mode in the mol- 
ecule [ 121. An almost stationary behavior of r(y) 
in the range 10-5<y<7~ 10B5 au can be seen. The 
approximate experimental time scale for the quasi- 
stationary behavior of r( v) is r? = 1.4~ 1 Ow5 au for 
this case, resulting in r( of ) = 4.1 x 1 OB4 au. The lat- 
ter value is very close to the actual average value of 
r in the plateau regime, which is about 4.5~ 10m4 
au. The single-exponential approximation, eq. (5) 
for the decay of p(t) following from this value of 
r(r:) is compared with the exact behavior of p(t) 
in fig. 3. It is seen that our approximate decay con- 
stant r( y:), eqs. (13) and (14), gives a good de- 
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inverse experimental timescale y (au.) 

Fig. 2. Quasi-dissipative behavior in the heavy mass barrier 
problem (see text): (solid line) decay constant I’(y) versus in- 
verse experimental time scale y; (dashed) first-order approxi- 
mation T, ( y), eq. (10); the dotted line denotes yt. 

scription of the apparent decay of p( t). 
For comparison, a heuristic application of the 

golden rule formula, eq. ( 1) , is included in fig_ 3. For 
this purpose we have used for p(&) the averaged 
smoothed density of zeroth-order states in the neigh- 
bourhood of the enery of the initial state. This choice 
for p(Eo) is often possible, since the smoothed den- 
sity in this energy regime shows little variation. Since 

probability p(t) 

1 
F 
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0.6 
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0.2 

O- 
0 0.1 0.2 0.3 

time (ps) 

Fig. 3. Quasidissipative behavior in the heavy mass barrier 
problem (see text): (solid line) exact p(f) for the 15quantum 
excitation; (dashed line) single-exponential description with 
r( 7:); (dotted line) approximation based on a heuristic evalua- 
tion of the golden rule formula (see text). 
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the couplings in the present model are sparse and the 
magnitude fluctuates strongly, the same approach is 
not possible for the coupling element contribution to 
eq. (1). Instead, we have used for I v(Eo) I ’ an av- 
erage squared coupling element, determined by av- 
eraging over the states directly coupled to the initial 
state. It is seen from the results presented in fig. 3 
that the heuristic golden rule interpretation we use 
overestimates the real apparent decay constant. 

There is always a certain arbitrariness in applying 
formulas such as eq. (1) to systems with discrete 
states. It may well be possible to choose other inter- 
pretations of eq. (1) that underestimate instead of 
overestimate the real decay constant, or, perhaps, 
even give a reasonable result for the particular case 
discussed above. This arbitrariness formed part of 
the reason for the approach presented in section 2. 

4. Discussion 

An approach has been presented here for the ap- 
proximate description of quasi-dissipative behavior 
in finite-state quantum systems. Approaches that lead 
to golden rule type formulas have the disadvantage 
that the assumption of a continuum of states has to 
be introduced at one level or another [ 1,2,11]. This 
assumption can lead to difficulties when such for- 
mulas are applied to quantum systems with a finite 
number of discrete states in the practical treatment 
of quantum dynamics of molecules. The heuristic 
application of the golden rule formula eq. (1) in sec- 
tion 3 provides an example for this problem. The 
present approach presents one way of overcoming 
this difficulty by introducing an apparent decay con- 
stant that depends on the experimental time scale for 
the observation of the system in question, and then 
determining at which experimental time scale the 
apparent decay constant should be evaluated. 

The example in section 3 demonstrates that the 
present approach can be used successfully for the de- 
termination of the approximate decay constant for 
a quantum state. However, this approach is not fool- 
proof. For example, we encountered one case that 
exhibited multiple quasi-stationary behavior of r( y) . 
In such a case the present approach can fail since the 
wrong plateau may be selected. 

A perhaps surprising by-product of the present re- 

search is the result that a heuristic application of the 
golden rule formula still gives a relatively good re- 
sult for decay constants, correct within an order of 
magnitude. The choice of which method to use for 
the actual determination of an apparent decay con- 
stant depends then on the desired accuracy. Natu- 
rally, the method presented here is numerically more 
demanding than the simplified approach based on 
eq. (1). .However, an important advantage of the 
present approach is that it is model-independent, in 
the sense that the specific structure of the Hamil- 
tonian is irrelevant for the application of the method. 

Acknowledgement 

It is a pleasure to thank S.M. Lederman for dis- 
cussions and for providing us with his results on the 
heavy mass barrier problem. The latter were partic- 
ularly helpful in testing the present method. We are 
pleased to acknowledge the support of this work by 
a grant from the National Science Foundation. 

Appendix 

In the continuum approximation eq. (7) has the 
form 

(AlI 
where we have assumed that the bath Hamiltonian 
is diagonalized and that the coupling depends on the 
energy only. The first term in the integral of (Al ) is 
a representation of the a-function [ 21, i.e. 

li_i& =Icd(x) . 

By using this relation eq. (1) follows immediately 
from (Al) in the limit y-+0. 
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